Localized probability of improvement for kriging based multi-objective optimization
نویسندگان
چکیده
The paper introduces a new approach to kriging based multi-objective optimization by utilizing a local probability of improvement as the infill sampling criterion and the nearest neighbor check to ensure diversification and uniform distribution of Pareto fronts. The proposed method is computationally fast and linearly scalable to higher dimensions.
منابع مشابه
Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations
Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill...
متن کاملMulti-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems
In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...
متن کاملFast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization
The use of Surrogate Based Optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a b...
متن کاملScalarizing cost-effective multi-objective optimization algorithms made possible with kriging
Purpose – The purpose of this paper is threefold: to make explicitly clear the range of efficient multi-objective optimization algorithms which are available with kriging; to demonstrate a previously uninvestigated algorithm on an electromagnetic design problem; and to identify algorithms particularly worthy of investigation in this field. Design/methodology/approach – The paper concentrates ex...
متن کاملWing-body Optimization Based on Multi-fidelity Surrogate Model
This paper focuses upon the efficient surrogate model algorithm for expensive simulation-based design optimization problems. Co-kriging method is used to develop a multi-fidelity surrogate model using two independent datasets. To achieve this objective, wing-body problem is taken as an example of application for highdimensional complex design problem. In addition, a simple sampling analysis is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018